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The tension between stability and efficiency in network formation models refers to a 
common finding in the literature of social networks: equilibrium networks and efficient 
networks often exhibit substantially different characteristics. In this note, I show that this 
tension can be partially reconciled in the two-way flow model of network formation with 
partner heterogeneity by introducing a small degree of information decay. This result 
extends a similar finding established for homogeneous agents in Charoensook (2025). Thus, 
this note contributes to the literature by demonstrating that the reconciliation of stability 
and efficiency through a small decay assumption is not confined to models with agent 
homogeneity but also holds in more general network settings. 
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1. Introduction 
  The study of network formation constitutes a rich, interdisciplinary field that leverages tools from 
game theory to understand how individuals or agents form networks by strategically creating connections. This 
approach is grounded in the premise that agents engage in a cost-benefit analysis when deciding whether to 
establish links with others. The motivation for this line of research stems from the observation that social 
networks play a critical role in shaping the diffusion of information across society, influencing important areas 
such as job search dynamics (Granovetter, 1974) and consumers’ evaluations of products and innovations 
(Rogers & Kincaid, 1981). 
  Within this broad literature, the foundational contribution of Bala and Goyal (2000a) stands out. They 
introduced a formal model of network formation that is conceptually similar to a telephone call system: the 
initiator of a communication link incurs a cost to establish a channel through which both parties can exchange 
information, assumed to be nonrival. These links, once formed, allow bilateral information flows, effectively 
creating a two-way communication network. 
  Under the assumption of perfect information transmission—where information does not degrade as 
it travels through the network—Bala and Goyal (2000a) demonstrate that equilibrium networks exhibit 
remarkably simple structures. Only two types of networks remain stable in equilibrium: the empty network, in 
which no connections are formed, and the center-sponsored star, where a single central agent bears the cost of 
connecting to all others, thereby facilitating universal information access. However, such idealized conditions 
are rarely observed in actual social or economic networks. 
  One prominent deviation from perfect information flow is the assumption known as small decay. This 
refers to the realistic assumption that information slightly deteriorates as it travels through links in the 
network. The decay is sufficiently minimal that, if two agents are indirectly connected via intermediate nodes, 
the benefit of forming a direct link between them is outweighed by the cost. As a result, no agent has the 
incentive to pay for a shortcut connection. This concept is formally explored and given rigorous analytical 
treatment in the work of De Jaegher and Kamphorst (2015), and further extended in Charoensook (2020). 
  An important insight emerging from this line of inquiry is the strategic value of well-informed 
individuals within the network. Specifically, agents who receive a higher volume or quality of information from 
others—termed "best-informed" agents—become attractive targets for others to link with. These agents act as 
efficient hubs, providing superior information access compared to alternative potential connections. This 
understanding enables De Jaegher and Kamphorst (2015) to characterize the structural features of Nash 
networks, where each agent’s link decisions form a pure-strategy Nash equilibrium. 
  Building upon these insights, Charoensook (2025) contributes a significant insight by demonstrating 
that best-informed agents not only serve as key nodes in equilibrium networks but are also the most effective 
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transmitters of information from an efficiency perspective. In other words, there is a structural overlap 
between Nash networks and efficient networks: the identity of the agent who receives links (i.e., the link 
receiver) is identical in both types of networks. Figure 1 and Proposition 1 in Charoensook (2025) offer a visual 
and formal articulation of this finding. This result presents a departure from the prevailing view in the 
literature, which generally finds that equilibrium networks (which are stable given agents' incentives) and 
efficient networks (which maximize overall welfare) diverge significantly in structure. 
  However, the result in Charoensook (2025) holds under a specific set of assumptions—namely, that 
all agents are homogeneous in terms of the cost they incur to form links and the value they place on the 
information they receive. This restricts the model’s applicability and raises an important question: Can the 
equivalence between efficient and Nash link receivers persist in more general settings where agents are 
heterogeneous? 
 

 
Figure 1. 

On the left (Figure (a), two groups of agents remain disconnected. When the decay is small, within the group of Kim, Alex, and Roman, Kim, 
positioned at the center, holds more information than Alex and Roman (Lemma 1 in De Jaegher and Kamphorst (2015)). As a result, if 
Anthony (Anthony) seeks to acquire information from this group, he will strategically choose Kim as his connection, as il lustrated in the 
upper right (Figure (b)), rather than Alex or Roman, as shown in the lower right (Figure (c)). Furthermore, Proposition 1 in Charoensook 
(2025) establishes that Kim (Kim) is also the most efficient agent for transmitting information within the network. This note extends that 
result to case of partner heterogeneity, where Anthony (Anthony) ’s link formation cost and the value of information he receives depend 
on which of the three potential connections—Kim, Alex, or Roman —he chooses. This illustration is adapted from Figure 1 in Charoensook 
(2025)  

 
  In this note, I answer this question by extending the result of Charoensook (2025) to the case of partner 
heterogeneity in link formation cost and value, which is a form of agent heterogeneity that is well studied in the 
literature (see Charoensook (2020), Charoensook (2022), Billand et al. (2012), Olaizola and Valenciano 
(2021)). Partner heterogeneity refers to the assumption that the cost and/or benefit that an agent 𝑖 
incurs/receives from establishing a link with an agent 𝑗 depends solely on the identity of agent 𝑗. As noted by 
Billand et al. (2011), introducing partner heterogeneity is a natural extension of Bala and Goyal (2000a)’s two-
way flow network formation model, which originally assumes homogeneous players. Billand et al. (2011) also 
provide an illustration that is quoted as follows: "Consider Bala and Goyal (2000a)’s example of telephone 
communication: when making a call, the caller incurs a cost that varies depending on the recipient’s identity. 
For instance, if the recipient is a particularly busy individual, reaching them may require greater effort or time, 
increasing the cost for the caller. Similarly, the value that a player derives from a connection is influenced by 
the information possessed by the recipient, which, in turn, is shaped by both their individual attributes and 
their position within the broader social network. Thus, network formation in heterogeneous settings naturally 
accounts for variations in costs and benefits based on the identities and characteristics of individuals involved”. 
Proposition 1 in this note then shows that, given the small decay assumption and partner heterogeneity in link 
formation cost and value, every link receiver in a Nash network is an efficient link receiver. Hence, Proposition 
1 in this note extends Proposition 1 in Charoensook (2025) to the case of partner heterogeneity. This extension 
is a major contribution of this work to the literature. 

In relation to the broader literature, this finding carries significant implications. A core theme in the 
study of network formation is the inherent tension between equilibrium (or stability) and efficiency. Many 
prior works document that Nash networks, driven by individual incentives, often yield structures that are 
markedly different from those that would maximize overall social welfare (see Charoensook (2025) for a 
comprehensive review). The main contribution of Charoensook (2025) was to demonstrate that this tradeoff 
can be resolved in models that assume agent homogeneity and small decay, such as that of De Jaegher and 
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Kamphorst (2015). The present note deepens this insight by showing that the reconciliation between stability 
and efficiency can hold even when agents differ in the costs and values they associate with specific partners, 
which is a more realistic setting. 

The remainder of this note is organized as follows. Section 2 introduces the formal model with 
partner heterogeneity. Section 3 presents the main theoretical results. Finally, Section 4 concludes by offering 
reflections on possible directions for future research. 
 
2. The Model 

The set of all agents in the network is 𝑁. We start by describing how agents form connections with one 
another. This process resembles making a phone call: an agent who initiates the connection incurs a cost to 
reach out to another agent. Once the connection is made, both agents share nonrival information. A link from 
agent 𝑖 to agent 𝑗 is denoted 𝑖𝑗, where 𝑖 is the initiator (or sender) and 𝑗 is the recipient. The set of all potential 
links that agent 𝑖 can initiate is represented by 𝐿𝑖 = {𝑖𝑗 ∣ 𝑗 ∈ 𝑁\{𝑖}} and the set of all possible links in the 
network is 𝐿 ≡ ⋃𝑖∈𝑁𝐿𝑖. 

A set of links formed by agent 𝑖, 𝑔𝑖 ⊂ 𝐿𝑖 , defines their individual strategy, and the combination of all 
agents’ strategies,𝑔 = ⋃𝑖∈𝑁𝑔𝑖, forms a strategy profile. The entire space of possible strategies is denoted by 𝐺 ≡
2𝐿 . 

If a link 𝑖𝑗 belongs to the strategy profile 𝑔, we say that agent 𝑖 accesses agent 𝑗. The structure of 𝑔 can 
be visualized as a network, where a directed arrow from 𝑖 to 𝑗 indicates that 𝑖𝑗 ∈ 𝑔𝑖. See Figure 2 in the next 
section for a graphical example. 

Once a link between two agents is established, it enables the exchange of information, which is 
assumed to be nonrival and costless to transmit once the link exists. The framework follows the bidirectional 
(or “two-way”) communication structure introduced in Bala and Goyal (2000a), whereby the existence of a link 
in either direction is sufficient for mutual information flow. Formally, we say that a link exists between agents 
𝑖 and 𝑗 if 𝑖𝑗‾ ∈ 𝑔, where 𝑖𝑗‾ ∈ 𝑔 denotes that either 𝑖𝑗 ∈ 𝑔 or 𝑗𝑖 ∈ 𝑔. That is, the presence of a unidirectional link 
in either direction enables symmetric information access between the two agents. 

Importantly, agents need not be directly linked to share information. If there exists a finite sequence 
of pairwise-connected agents that begins at 𝑖 and ends at 𝑗, information can traverse this path and reach from 
𝑖 to 𝑗 via intermediate nodes. Such a sequence is referred to as a chain in the network. Formally, a chain from 𝑖 
to 𝑗 in a network 𝑔, denoted 𝑃𝑖𝑗(𝑔), is defined as a sequence of agents {𝑖0𝑖1, 𝑖1𝑖2, … , 𝑖𝑘−1𝑖𝑘}, with 𝑖0 = 𝑖 and 𝑖𝑘 =

𝑗, such that each consecutive pair 𝑖ℓ𝑖ℓ+1 ∈ 𝑔 for ℓ = 0, … , 𝑘 − 1. If such a path exists, agents 𝑖 and 𝑗 are said to 

be connected in the network. 
Among all possible chains linking two agents, the one containing the smallest number of links is 

referred to as the shortest chain. The length of this chain provides a natural notion of separation between 
agents. Specifically, the distance from agent 𝑖 to agent 𝑗, denoted 𝑑𝑖𝑗(𝑔), is defined as the number of links in the 

shortest chain 𝑃𝑖𝑗(𝑔). Following standard convention in the literature, the distance from any agent to itself is 

zero, i.e., 𝑑𝑖𝑖(𝑔) = 0 
for all 

𝑖 ∈ 𝑁. Conversely, if there exists no such chain connecting 𝑖 and 𝑗, we define the 
distance between them to be infinite, that is, 𝑑𝑖𝑗(𝑔) = ∞. 

While agents are able to exchange information through both direct and indirect connections within a 
network, the quality or effectiveness of this communication is subject to attenuation. In particular, information 
transmission is not perfectly preserved as it traverses the network; rather, it degrades with each intermediate 
step due to frictional losses in the communication process. This attenuation is modeled using a constant 
geometric decay applied over the length of the communication path. 

Formally, let 𝜎 ∈ [0,1] denote the decay factor, which governs the rate at which information devalues 
as it passes through successive links. A decay factor of 𝜎 = 1 corresponds to perfect communication, where 
information is transmitted without loss regardless of the number of intermediaries. Conversely, values of 𝜎 <
1 imply that each link weakens the signal, capturing the diminishing reliability or relevance of information 
transmitted over greater distances. 

Consider an agent 𝑗 who possesses information of normalized value 1. If another agent 𝑖 is connected 
to 𝑗 via a path in the network 𝑔, and the length of the shortest such path—i.e., the minimal number of links—is 
given by 𝑑𝑖𝑗(𝑔) = 𝑘, then the effective value of the information received by 𝑖 from 𝑗 is given by 𝜎𝑘. This 

formulation captures the idea that the further apart two agents are in the network, the less valuable the 
information one receives from the other becomes. 

In the case where 𝑖 = 𝑗, we define 𝑑𝑖𝑖(𝑔) = 0, and hence 𝜎𝑑𝑖𝑖(𝑔) = 1, indicating that an agent fully 

retains their own information. If no chain exists between agents 𝑖 and 𝑗, meaning 𝑑𝑖𝑗(𝑔) = ∞, we define 𝜎∞ =

0, implying that no information is transmitted between disconnected agents. 
We now formalize the notion of the small decay assumption, a key assumption that simplifies the 

structure of equilibrium networks and aligns individual incentives with efficient network formation. This 
assumption plays a central role in determining whether agents find it beneficial to establish direct links as a 
means of improving access to information. 
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Consider a scenario in which agent 𝑗’s information reaches agent 𝑖 via an indirect path—i.e., a chain of 
multiple links involving intermediary agents. In this case, agent 𝑖 may consider forming a direct link to agent 𝑗 
in order to shorten the communication path, thereby reducing the information decay. The potential benefit 
from this action is quantified by the improvement in information quality due to the reduction in path length, 
which translates to an increase in the decay-adjusted value of the information received. However, forming such 
a direct link incurs a non-negligible cost, associated with establishing and maintaining the connection. 

The incentive for agent 𝑖 to create this direct link depends on the relative magnitudes of the gain in 
information precision and the link formation cost. When the decay factor 𝜎 ∈ [0,1] is sufficiently close to 1, the 
marginal improvement in information flow resulting from shortening the path becomes small. That is, if 
information hardly decays as it passes through the network (i.e., decay is “small”), then shortening a chain by 
one or more links yields only a negligible benefit. As a result, the payoff improvement does not justify the link 
formation cost, eliminating the incentive for unilateral link additions that aim to reduce path length. 

From a system-wide or efficiency perspective, the same logic applies: when decay is sufficiently small, 
the aggregate informational gain to the network from adding redundant links becomes minor relative to the 
social cost of maintaining additional connections. Therefore, efficient networks under small decay tend to 
minimize redundancy, resulting in a minimal network where at most one path connects any pair of agents. 

This analytical simplification is encapsulated in what is referred to as the small decay assumption, a 
condition studied in detail by De Jaegher and Kamphorst (2015). Throughout this note, we maintain this 
assumption as a standing condition. For formal implications of this assumption on network structure and 
equilibrium outcomes, the reader is referred to Lemma 1, which precedes Proposition 1 in the following 
section. 

We now introduce a set of formal notations and definitions pertaining to network structure and 
information flow, which will be used throughout the remainder of the analysis. 

Let 𝑔 ⊆ 𝐿 be a network composed of links formed among agents in the finite set 𝑁. A subnetwork of 𝑔, 
denoted 𝑔′, is any subset of links such that 𝑔′ ⊆ 𝑔. A network 𝑔 is said to be connected if, for every pair of 
distinct agents 𝑖, 𝑗 ∈ 𝑁, there exists a path (or chain) of links in 𝑔 through which information can flow from 𝑖 to 
𝑗. In other words, the network forms a single connected component. 

A component of a network 𝑔 is defined as a subnetwork 𝑔′ ⊆ 𝑔 that is connected and is maximal with 
respect to set inclusion: no additional link from 𝑔\𝑔′ can be added to 𝑔′ without violating its status as a distinct 
connected subset. Thus, components partition the network into disjoint, internally connected subnetworks. 

A network is considered empty if it contains no links, i.e., 𝑔 = ∅, and hence no communication or 
connection exists among any pair of agents. In contrast, a network or component is termed minimal if it remains 
connected, yet contains no redundant links—formally, if there exists at most one chain connecting any pair of 
agents. That is, the removal of any link from a minimal network would result in disconnection. 

We also define agent-specific roles within a network. An agent 𝑖 ∈ 𝑁 is said to be a link sender if there 
exists a link 𝑥𝑦 ∈ 𝑔 with 𝑥 = 𝑖, and a link receiver if 𝑦 = 𝑖 for some 𝑥𝑦 ∈ 𝑔. These designations reflect the 
directionality of link formation, particularly when costs are borne unilaterally by senders. 

We now turn to notations relevant to the flow of information in minimal networks. Suppose 𝑔 is a 
minimally connected network, so each pair of agents is connected via a unique chain. If a link 𝑖𝑗‾ ∈ 𝑔 is removed, 
this action separates the network into two disconnected subnetworks. Let us denote by 𝐷𝑖𝑗‾

𝑖 (𝑔) the resulting 

subnetwork that contains agent 𝑖, and by 𝐷𝑖𝑗‾
𝑗 (𝑔) the one containing agent 𝑗. These are the two disjoint 

components created by the deletion of 𝑖𝑗‾ , each of which is a connected subnetwork of 𝑔\{𝑖𝑗‾ }. 
Furthermore, let 𝑁𝑖𝑗‾

𝑖 (𝑔) and 𝑁𝑖𝑗‾
𝑗 (𝑔) denote the respective sets of agents belonging to the subnetworks 

𝐷𝑖𝑗‾
𝑖 (𝑔) and 𝐷𝑖𝑗‾

𝑗 (𝑔). These sets will be instrumental in defining the notion of an efficient link receiver in later 

sections. For a graphical representation of these concepts, refer to Figure 2. 
To formally describe how networks can be altered through local modifications, we introduce a notation 

for link addition and deletion. Let 𝑔 ⊆ 𝐿 be a network consisting of directed links among agents in the finite set 
𝑁. If 𝑖𝑗 ∈ 𝑔, then we denote the removal of this link by 𝑔 − 𝑖𝑗, which is shorthand for the set-theoretic difference 
𝑔\{𝑖𝑗}. This operation yields a new network identical to 𝑔 except that the link from 𝑖 to 𝑗 is no longer present. 
Conversely, if 𝑖𝑗 ∉ 𝑔, the operation 𝑔 + 𝑖𝑗 adds the directed link 𝑖𝑗 to the existing network, resulting in 𝑔 ∪ {𝑖𝑗}. 

More generally, we allow for simultaneous modifications to the network. If one wishes to remove a 
link 𝑖𝑗 and introduce a new link 𝑘𝑙, this is expressed as 𝑔 − 𝑖𝑗 + 𝑘𝑙, which is defined as the union (𝑔\{𝑖𝑗}) ∪ {𝑘𝑙}. 
This operation enables comparisons of network structures, particularly when analyzing marginal changes in 
payoffs or welfare following a single link replacement. 

Beyond individual link operations, we also formalize the notion of combining distinct subnetworks. 
Suppose 𝑔′ and 𝑔″ are two disjoint subnetworks (i.e., they do not share any links or overlapping nodes) such 
that agent 𝑖 belongs to the node set of 𝑔′ and agent 𝑗 belongs to the node set of 𝑔″. Then the operation 𝑔′ ⊕𝑖𝑗 𝑔″ 

denotes the new network formed by taking the union of 𝑔′, 𝑔″, and the new bridging link 𝑖𝑗, that is, 𝑔′ ⊕𝑖𝑗 𝑔″ =

𝑔′ ∪ 𝑔″ ∪ {𝑖𝑗}. This notation captures the act of merging disconnected components through a single link, which 
is analytically useful in the study of minimal networks and efficient networks. 



 

   166 

A special case of this operation arises in the context of minimally connected networks. Consider a 
network 𝑔 and a link 𝑖𝑗 ∈ 𝑔 such that its removal partitions 𝑔 into two disconnected subnetworks, denoted 

𝐷𝑖𝑗
𝑖 (𝑔) and 𝐷𝑖𝑗

𝑗 (𝑔), containing agents 𝑖 and 𝑗, respectively. Then the original network 𝑔 can be reconstructed 

from these components by reintroducing the severed link, i.e., 𝐷𝑖𝑗
𝑖 (𝑔) ⊕𝑖𝑗 𝐷𝑖𝑗

𝑗 (𝑔) = 𝑔. This identity will play an 

instrumental role in the proof of Lemma 2, which analyzes the welfare consequences of optimal reconnections 
following local deletions. 

To capture individual-level heterogeneity in incentives and constraints across agents in a networked 
environment, we begin by formalizing two fundamental structures: the value that each agent derives from 
accessing information held by others, and the cost of initiating connections to obtain such information. Let 𝑉𝑖𝑗  

denote the value agent 𝑖 assigns to the information possessed by agent 𝑗, assuming the information is received 
without any loss or distortion. Collectively, these valuations define the information value structure 𝒱 =
{𝑉𝑖𝑗}𝑖,𝑗∈𝑁 , which may reflect complex asymmetries in the relative informativeness of agents from the 

perspective of others. In a particularly tractable setting, this structure satisfies partner heterogeneity: that is, 
the value derived from connecting to agent 𝑗 is identical for all receivers, so 𝑉𝑖𝑗 = 𝑉𝑗  for every 𝑖 ∈ 𝑁. This 

formulation treats the informativeness of each agent as an intrinsic characteristic, invariant across recipients. 
In parallel, we define the cost structure 𝒞 = {𝑐𝑖𝑗}𝑖,𝑗∈𝑁,𝑖≠𝑗, where 𝑐𝑖𝑗  represents the cost incurred by 

agent 𝑖 to initiate a directed link to agent 𝑗. When 𝑐𝑖𝑗 = 𝑐𝑗  for all 𝑖, the structure also satisfies partner 

heterogeneity in costs: linking to a given agent imposes a cost determined solely by that agent’s identity,  
regardless of the sender. The special case in which 𝑉𝑖𝑗 = 𝑉 > 0 and 𝑐𝑖𝑗 = 𝑐 > 0 for all distinct 𝑖, 𝑗 ∈ 𝑁 defines a 

setting of agent homogeneity, where all agents are symmetric in both the informativeness they offer and the 
costs they impose on others. 

Given these structures, the effective quantity of information transmitted in any realized network 
depends not only on the underlying valuations but also on the network structure and the attenuation of 
information across paths. Recall that 𝑑𝑖𝑗(𝑔) is the length of the shortest path between agents 𝑗 and 𝑖 in 𝑔, and 

𝜎 ∈ [0,1] is the decay factor governing information degradation over distance, then the quantity of information 
received by agent 𝑖 from agent 𝑗 is given by 

𝐼𝑖𝑗(𝑔) = 𝜎𝑑𝑖𝑗(𝑔)𝑉𝑗 . 

 
When 𝑖 = 𝑗, we assume 𝑑𝑖𝑖(𝑔) = 0, so 𝐼𝑖𝑖(𝑔) = 𝑉𝑖 , reflecting the fact that agents retain their own 

information without decay. The total information accessible to agent 𝑖 across the network is thus 
 

𝐼𝑖(𝑔) = ∑ 𝐼𝑖𝑗

𝑗∈𝑁

(𝑔). 

 
However, acquiring information requires incurring costs associated with forming direct connections. 

Let 𝑁𝑖
𝑆(𝑔) = {𝑗 ∈ 𝑁 ∣ 𝑖𝑗 ∈ 𝑔} denote the set of agents to whom agent 𝑖 sends links in the network 𝑔. We assume 

that link formation is costly and that these costs accumulate additively and are transformed by a strictly 
increasing cost function 𝐶: ℝ≥0 → ℝ≥0, capturing the disutility associated with establishing and maintaining 
multiple links. The utility or payoff of agent 𝑖 in network 𝑔 is then given by the difference between the total 
discounted information acquired and the total cost incurred: 

𝑈𝑖(𝑔) = 𝐼𝑖(𝑔) − 𝐶 ( ∑ 𝑐𝑗

𝑗∈𝑁𝑖
𝑆(𝑔)

).    [
Eq. 1

]

 

 
Let 𝑔∗ represent a network, where agent 𝑖’s strategy is given by 𝑔𝑖

∗ ⊂ 𝑔∗. Define 𝑔−𝑖
∗ = 𝑔∗\𝑔𝑖

∗, so that 
the network can be written as 𝑔∗ = 𝑔𝑖

∗ ∪ 𝑔−𝑖
∗ . 

Agent 𝑖’s strategy 𝑔𝑖
∗ is a best response if it maximizes their utility, i.e., 

 
𝑈𝑖(𝑔∗) ≥ 𝑈𝑖(𝑔𝑖 ∪ 𝑔−𝑖

∗ ) 
 

for all possible strategies 𝑔𝑖 that agent 𝑖 could choose. 
A network 𝑔∗ is called a Nash network if every agent in the network is playing a best response. 
From a welfare perspective, it is of central interest to evaluate the aggregate payoff generated by a 

network. The total social welfare in network 𝑔 is given by the sum of individual utilities: 
 

𝑊(𝑔) = ∑ 𝑈𝑖

𝑖∈𝑁

(𝑔). 
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Network 𝑔 is said to dominate another network 𝑔′ if 𝑊(𝑔) ≥ 𝑊(𝑔′), and it is said to be efficient if it 
dominates all other possible networks. Substituting from the individual payoff expressions, we decompose 
welfare as 

𝑊(𝑔) = ∑ 𝐼𝑖

𝑖∈𝑁

(𝑔) − ∑ 𝐶
𝑖∈𝑁

( ∑ 𝑐𝑗

𝑗∈𝑁𝑖
𝑆(𝑔)

) = 𝐼‾(𝑔) − 𝐶‾(𝑔),

 

where 

𝐼‾(𝑔) = ∑ 𝐼𝑖

𝑖∈𝑁

(𝑔), 𝐶‾(𝑔) = ∑ 𝐶
𝑖∈𝑁

( ∑ 𝑐𝑗

𝑗∈𝑁𝑖
𝑆(𝑔)

).

 

 
These expressions also enable the characterization of which agents are most central to sustaining 

network efficiency. In a minimally connected network 𝑔, consider a link 𝑥𝑦‾ ∈ 𝑔. Removing this link separates 
the network into two disjoint subnetworks. Let 𝑁𝑥𝑦‾

𝑦 (𝑔) denote the set of agents in the component containing 𝑦 

post-deletion. Suppose two agents 𝑗′, 𝑗″ ∈ 𝑁𝑥𝑦‾
𝑦 (𝑔) are each considered as candidates for reconnecting to 𝑥 to 

restore connectivity. Agent 𝑗′ is said to be superior to 𝑗″ as a transmitter relative to link 𝑥𝑦‾  if: 
 

𝑊(𝑔 − 𝑥𝑦‾ + 𝑥𝑗′‾ ) ≥ 𝑊(𝑔 − 𝑥𝑦‾ + 𝑥𝑗″‾ ). 

 
If 𝑗′ is superior to all other agents in 𝑁𝑥𝑦‾

𝑦 (𝑔), then 𝑗′ is the efficient transmitter for 𝑥𝑦‾ . An agent is an 

efficient link receiver (resp., sender) if they are the efficient transmitter for every link they receive (resp., send). 
Minimal efficient networks must exhibit this property across all agents. 

The distribution of information in a network also determines which agents are best-informed. For any 
minimally connected subnetwork 𝑀 ⊆ 𝑁, agent 𝑖 ∈ 𝑀 is said to be better-informed than 𝑗 ∈ 𝑀 if 

 

∑ 𝐼𝑖𝑘

𝑘∈𝑀

(𝑔) ≥ ∑ 𝐼𝑗𝑘

𝑘∈𝑀

(𝑔), 

 
and is the best-informed agent in 𝑀 if this inequality holds for all 𝑗 ∈ 𝑀. If 𝑀 = 𝑁𝑥𝑦‾

𝑥 (𝑔) for some link 

𝑥𝑦‾ ∈ 𝑔, then 𝑖 is the best-informed agent with respect to 𝑥𝑦‾ . 
It is essential to distinguish between the notions of best-informed agents and efficient link receiver. 

The former are identified based on the amount of information they personally receive, whereas the latter are 
characterized by the aggregate benefit they generate for the network when chosen as link recipients. 
Nonetheless, in the special case of agent homogeneity, these roles coincide: the best-informed agent is also the 
efficient transmitter. This equivalence is established by Charoensook (2025) and is extended to the case of 
partner heterogeneity in Proposition 1 of the following section. 

 
3. Main Results 

We begin by establishing two foundational lemmata that will form the basis for our subsequent 
characterizations of both equilibrium and efficient network structures. These results help clarify how the decay 
factor and heterogeneity in partner characteristics influence minimality and the identity of optimal link 
recipients. Our first lemma introduces the concept of small decay, which plays a critical role in ensuring that 
both Nash and efficient networks are minimal. The result identifies a threshold for the decay factor above which 
redundant links cease to be optimal, either from an individual or a social perspective. 

 
Lemma 1.  [Adapted from Lemma 1 in Charoensook (2025)] 
Consider the payoff function defined in Equation (1), and suppose the value structure 𝒱 and cost structure 

𝒞 satisfy partner heterogeneity. Then, for any link cost 𝑐 > 0 and population size 𝑛 ≥ 4, there exists a decay 
threshold 𝜎𝐾 < 1 such that for all decay levels 𝜎 > 𝜎𝐾, every nonempty Nash network and every nonempty efficient 
network is minimal. 
 

The reasoning behind this result is intuitive. When information does not decay with distance (i.e., when 
𝜎 = 1), shortening the path between two agents provides no marginal benefit since information is already 
perfectly transmitted. In such cases, forming additional links imposes a cost without yielding any informational 
gain. This logic extends to the setting where 𝜎 is close to one: when decay is sufficiently small, the marginal 
improvement in information access from shortening a path is minimal. Since the cost of link formation is 
positive and the improvement in information is negligible, agents have no incentive to introduce redundant 
connections. Continuity of the payoff function ensures that this conclusion holds for all 𝜎 sufficiently close to 
one. The minimality of Nash and efficient networks in this setting also follows from earlier results in Unlu 
(2018) and Billand et al. (2011). 
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We now state a second lemma, which formalizes how the total informational content of a network 

changes when two disconnected components are merged via a bridging link. This lemma will serve as a key 
tool in evaluating which agents should be chosen as link recipients to maximize overall information flow. 
 

Lemma 2.  [Taken from Lemma 2 in Charoensook (2025)] 
Let 𝑔′ and 𝑔″ be disjoint, minimally connected networks with agent sets 𝑁′ and 𝑁″, respectively, and let 

𝑥 ∈ 𝑁′, 𝑦 ∈ 𝑁″. Define 𝑔 = 𝑔′ ⊕𝑥𝑦‾ 𝑔″, i.e., the network obtained by merging 𝑔′ and 𝑔″ via the undirected link 𝑥𝑦‾ . 

Then, the total information in 𝑔 is expressed as: 𝐼‾(𝑔) = 𝐼‾(𝑔′) + 𝐼‾(𝑔″) + 2𝜎𝐼𝑥(𝑔′)𝐼𝑦(𝑔″). 

 
This identity reveals that the gain from connecting two components depends on both the decay factor 

and the informational centrality of the agents at the bridge endpoints. In particular, if one replaces a link 𝑥𝑦 ∈
𝑔 with a link 𝑥𝑧, and the receiver 𝑧 is better-informed than 𝑦 in the corresponding subnetwork. Formally, if 

𝐼𝑧 (𝐷𝑥𝑦
𝑦 (𝑔)) > 𝐼𝑦 (𝐷𝑥𝑦

𝑦 (𝑔)) then total information in the network increases so that 𝐼‾(𝑔 − 𝑥𝑦 + 𝑥𝑧) > 𝐼‾(𝑔). 

This implies that, all else equal, agents should prefer to link with better-informed counterparts. Fixing the 
identity of the sender, the optimal recipient is the best-informed agent in the disconnected component. 

This observation leads to the following proposition, which characterizes the structural properties of 
nonempty minimal networks that emerge under both Nash equilibrium and efficiency. The result provides a 
common condition on that every Nash network and every efficient network possesses concerning a link 
recipient. 
 

Proposition 1.   
Let the payoff function be as defined in Equation (1), and assume 𝑛 ≥ 4 and 𝜎 ∈ (𝜎𝐾 , 1). In any nonempty 

minimal Nash or efficient network 𝑔, the following two conditions hold for any link 𝑥𝑦 ∈ 𝑔: 
1. 𝑐𝑦 ≤ 𝑐𝑦′ for all 𝑦′ ∈ 𝑁𝑥𝑦

𝑦 (𝑔) 

2. For all 𝑦″ ∈ 𝑁𝑥𝑦
𝑦 (𝑔) such that 𝑐𝑦 = 𝑐𝑦″ , we have 𝐼𝑦 (𝐷𝑥𝑦

𝑦 (𝑔)) ≥ 𝐼𝑦″ (𝐷𝑥𝑦
𝑦 (𝑔)) 

That is, every link receiver must be an efficient one. 
 

Proof of the Proposition 1.  
From Lemma 1, all Nash and efficient networks are minimal when 𝜎 is sufficiently close to 1. In the no 

decay case, a sender always links to the agent with the lowest cost. By continuity, this preference extends to the 
case of small decay. For the second property, Lemma 2 guarantees that linking to the best-informed agent 
maximizes total information in the efficient case. For Nash networks, the result follows from De Jaegher and 
Kamphorst (2015), who show that equilibrium link receivers must be the best-informed agents in their 
components. 0 

This proposition generalizes Proposition 1 in Charoensook (2025), which included only the second 
condition. Under agent homogeneity, the first condition is automatically satisfied. However, in the presence of 
partner heterogeneity, it must be imposed explicitly to characterize equilibrium and efficient link choices. 
 

Example 1.   
In a minimal Nash network 𝑔 as in the Figure 2(a), let 𝑛 = 10 and 𝜎 = 0.99. Let agents consist of 2 groups: 

{𝐿1, 𝐿2, 𝐿3}, {𝐻1, 𝐻2, 𝐻3, 𝐻4, 𝐻5, 𝐻6, 𝐻7} and set 𝑐𝐿1
= 𝑐𝐿2

= 𝑐𝐿3
= 1.2 and 𝑐𝐻1

= 𝑐𝐻2
=. . . = 𝑐𝐻7

= 1.5 and 𝑉𝐿1
=

𝑉𝐿2
= 𝑉𝐿3

= 100 and 𝑉𝐻1
= 𝑉𝐻2

=. . . = 𝑉𝐻7
= 101 where (To verify that this network is Nash, we simply need to 

verify that each link receiver is a best-informed agent and that any link removal, which lowers the link 
formation cost and at the same time lowers the informational quantity, does not lead to a higher payoff. Such a 
verification is straightforward yet tedious and hence is left to the readers to verify). Let the payoff be 𝑈𝑖(𝑔) =

∑ 𝜎𝑑𝑖𝑗(𝑔)
𝑗∈𝑁∪{𝑖} 𝑉𝑗 − (∑ 𝑐𝑗𝑗∈𝑁𝑖

𝑆(𝑔) )
2

. Consider the dotted link 𝐻1𝐿1. Our first goal is to show that 𝐻1’s best response 

is to access either 𝐿1, 𝐿2 or 𝐿3. First, observe that if there is no decay then certainly 𝐻1’s best response is to access 
either one of these three agents. If the decay is sufficiently small then by continuity 𝐻1’s best response is still to 
access one of these three agents depending on which one is best informed, since accessing other agents will incur 

excessive link formation cost. Specifically for 𝜎 = 0.99, we have that 𝐼𝐿1
(𝐷𝐻1𝐿1

𝐿1 (𝑔)) = 883.02 > 𝐼𝐿2
(𝐷𝐻1𝐿1

𝐿1 (𝑔)) =

𝐼𝐿3
(𝐷𝐻1𝐿1

𝐿1 (𝑔)) = 882.07 (see network 𝐷𝐻1𝐿1

𝐿1 (𝑔) in Figure 2(b) ). Thus, 𝐻1’s best response is to access 𝐿1. 

Next, let us check that 𝐻1’s decision to access 𝐿1 rather than other agents maximizes total payoff of all 

agents in the network. That is, 𝑊(𝑔) > 𝑊(𝑔 − 𝐻1𝐿1 + 𝐻1𝑧) for any agent 𝑧 ∈ 𝑁𝐻1𝐿1

𝐿1 (𝑔). Again, first observe that 

if there is no decay then 𝐻1’s decision to access 𝐿1, 𝐿2 or 𝐿3 rather than 𝐻2, 𝐻3, . . . , 𝐻7 leads to a higher total payoff 
due to a lower link formation cost. Now if we assume small decay then by the continuity of payoff this property 
continues to hold. It remains to be confirmed, therefore, that accessing 𝐿1 rather than 𝐿2 or 𝐿3 leads to higher total 

amount of information. That is, 𝐼‾(𝑔) > 𝐼‾(𝑔 − 𝐻1𝐿1 + 𝐻1𝑧) for every 𝑧 ∈ 𝑁𝐻1𝐿1

𝐿1 (𝑔). Making use of Lemma 2 we 
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simply need to identify the best-informed agent among agents 𝐿1, 𝐿2 or 𝐿3. Since, as shown in the previous 
paragraph, our best-informed agent is 𝐿1. Thus, we conclude that 𝐻1’s action to access 𝐿1 rather than other agents 
maximizes total payoff of all agents in the network. Finally, as in the previous paragraph, 𝐿1 is also most attractive 
as a link receiver from the point of view of 𝐻1. Hence, this example supports Proposition 1, which states that the 
identity of link receiver in a Nash network and the identity of link receiver in a Nash network is identical. 

 
Figure 2. Example 1 

 
4. Conclusions  

In this note, I extend the main result of Charoensook (2025)—which states that every link receiver in 
a Nash network is an efficient link receiver—to the case where link formation costs and values exhibit partner 
heterogeneity. This extension contributes to the literature by demonstrating that the commonly observed 
tension between efficiency and stability in network formation models can be resolved not only in a specific case 
of agent heterogeneity but also in a broader setting of partner heterogeneity, which has been extensively 
studied in the literature. 

As noted in Charoensook (2025), this result has the potential to address another challenge in the 
literature: the tendency for the set of efficient networks to be large and include networks with long diameters. 
In fact, under partner heterogeneity, Unlu (2018) shows that an efficient network can take the form of a line 
structure when there is no decay (see Section 4.1.3 in Unlu (2018)). An open question that remains is how to 
leverage this result to refine the set of efficient networks by incorporating the small decay assumption. I leave 
this question as a direction for future research. 
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